H-Magic Line

problem

题意

二维平面上有n个整数坐标的点,求出一条直线将平面上的点分为数量相等的两部分,且线上不能有点,输出线上两个点确定该直线

题解:

先在左下角无穷远处取一质数坐标点(x,y) 对该点和n个点进行极角排序,设排序后中点坐标为(a,b)则这两点连线会将点分为数量相等的两部分,接着取左下角关于中点的对称点(a+a-x, b+b-y),再将该点左移动一格变成(2a-x-1, 2b-y)
则(x,y) (2a-x-1, 2b-y)两点确定的直线就可以分割点为两部分,且线上不会有点

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAX=100005;
const int INF=999999;
typedef long long ll;

int n,top;
struct Node
{
ll x,y;
}p[MAX],S[MAX];
ll Cross(Node a,Node b,Node c)
{
return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}

ll dis(Node a,Node b)
{
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
bool cmp(Node a,Node b)
{
ll flag = Cross(p[1],a,b);
if(flag != 0) return flag > 0;
return dis(p[1],a) < dis(p[1],b);
}

int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int n;
scanf("%d", &n);
p[1].x = -400000009; p[1].y = -2e3;

for(int i=1;i<=n;i++)
scanf("%lld%lld",&p[i+1].x,&p[i+1].y);
n++;
sort(p+2, p+1+n, cmp);

int pos = n/2 + 1;
ll a = p[pos].x - p[1].x + p[pos].x-1;
ll b = p[pos].y - p[1].y + p[pos].y;

printf("%lld %lld %lld %lld\n", p[1].x, p[1].y, a, b);
}
}