题目连接:
http://acm.hdu.edu.cn/showproblem.php?pid=6601
Description
N sticks are arranged in a row, and their lengths are a1,a2,…,aN.
There are Q querys. For i-th of them, you can only use sticks between li-th to ri-th. Please output the maximum circumference of all the triangles that you can make with these sticks, or print −1 denoting no triangles you can make.
Input
There are multiple test cases.
Each case starts with a line containing two positive integers N,Q(N,Q≤10^5).
The second line contains N integers, the i-th integer ai(1≤ai≤10^9) of them showing the length of the i-th stick.
Then follow Q lines. i-th of them contains two integers li,ri(1≤li≤ri≤N), meaning that you can only use sticks between li-th to ri-th.
It is guaranteed that the sum of Ns and the sum of Qs in all test cases are both no larger than 4×10^5.
Output
For each test case, output Q lines, each containing an integer denoting the maximum circumference.
Sample Input
5 3
2 5 6 5 2
1 3
2 4
2 5
Sample Output
13
16
16
Hint
题意
给一个长度为N的数组,Q个询问,(l, r)区间内任三个数能构成的三角形的最大周长
题解:
对于排序好的数组,若想要构成三角形周长最大,肯定从最大的边开始取,且三条边是连续的,也就是先取第一大第二大第三大,若不能构成三角形则取第二大第三大第四大,依次取下去。
未排序的数组可以用主席数查询第K大,对于每次询问最多只要查询四十多次,因为若要构造出不能构成三角形的数组,最优构造策略是斐波那契数列,1,2,3,5,8,11,19,到四十多项就超过1e9了。
代码
1 |
|