SPOJ-LCS2 Longest Common Substring II

题目连接:

https://vjudge.net/problem/SPOJ-LCS2

Description

A string is finite sequence of characters over a non-empty finite set Σ.

In this problem, Σ is the set of lowercase letters.

Substring, also called factor, is a consecutive sequence of characters occurrences at least once in a string.

Now your task is a bit harder, for some given strings, find the length of the longest common substring of them.

Here common substring means a substring of two or more strings.

Input

The input contains at most 10 lines, each line consists of no more than 100000 lowercase letters, representing a string.

Output

The length of the longest common substring. If such string doesn’t exist, print “0” instead.

Sample Input

alsdfkjfjkdsal
fdjskalajfkdsla
aaaajfaaaa

Sample Output

2

Hint

题意

求n个串的最长公共子串长度 (2<=n<=10)

题解:

对a串建后缀自动机,其余串在建好的自动机上跑,记录len[i][j]为第i个串与a串在状态j时的最长公共长度,
与上一题只有两个串不同的是,在每个串跑完后要从底向上的对每个状态j的fa更新len,原因是如果b串和a串有公共子串abcde
那么一定也有公共子串{bcde,cde…} 这时如果不更新len[bcde], len[cde]..当下一个串开始匹配时如果c串和a串公共子串最长只有bcde,那么bcde这个答案就漏掉了,因为此时len[2][endpos(bcde)] = 0,而上一题只有两个串时却不用更新,因为既然b串和a串有公共长度abcde,那么bcde一定长于{bcde,cde..}不更新他们是不会影响到答案的,也就是说c串可能没有abcde但是有bcde所以必须更新fa[abcde]

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;
const int mx = 1e6+5;

struct SAM_automaton {
int Next[mx][26], len[mx], fa[mx];
int last, tot;
int newnode() {
tot++;
for (int i = 0; i < 26; i++) Next[tot][i] = 0;
return tot;
}

void init() {
tot = 0;
last = newnode();
}

void add(int c) {
int p = last;
int np = last = newnode();
len[np] = len[p] + 1;
while (p && !Next[p][c]) {
Next[p][c] = np;
p = fa[p];
}
if (!p) fa[np] = 1;
else {
int q = Next[p][c];
if (len[q] == len[p] + 1) fa[np] = q;
else {
int nq = newnode();
len[nq] = len[p] + 1;
fa[nq] = fa[q];
for (int i = 0; i < 26; i++) Next[nq][i] = Next[q][i];
fa[q] = fa[np] = nq;
while (p && Next[p][c] == q) {
Next[p][c] = nq;
p = fa[p];
}
}
}
}
}SAM;

char a[mx];
int id[mx], len[12][mx];
int main() {
SAM.init();

scanf("%s", a);
int lena = strlen(a);

for (int i = 0; i < lena; i++) SAM.add(a[i]-'a');
int tot = 0;
for (int i = 1; i <= SAM.tot; i++) len[tot][i] = SAM.len[i];

while (scanf("%s", a) != EOF) {
lena = strlen(a);
tot++;
int nowlen = 0, p = 1;
for (int i = 0; i < lena; i++) {
int c = a[i] - 'a';
if (SAM.Next[p][c]) {
nowlen++;
p = SAM.Next[p][c];
} else {
while (p && !SAM.Next[p][c]) p = SAM.fa[p];
if (p == 0) {nowlen = 0, p = 1;}
else {
nowlen = SAM.len[p] + 1;
p = SAM.Next[p][c];
}
}
len[tot][p] = max(len[tot][p], nowlen);
}
for (int i = SAM.tot; i >= 1; i--) {
if (len[tot][i]) {
for (int j = SAM.fa[i]; j && len[tot][j] != SAM.len[j]; j = SAM.fa[j])//如果len[tot][j] == SAM.len[j]说明fa[j]已经更新过
len[tot][j] = SAM.len[j];
}
}
}
int ans = 0;
for (int i = 1; i <= SAM.tot; i++) {
int tmp = len[0][i];
for (int j = 0; j <= tot; j++)
tmp = min(tmp, len[j][i]);
ans = max(ans, tmp);
}
printf("%d\n", ans);
return 0;
}